a2 United States Patent

US009075798B2

(10) Patent No.: US 9,075,798 B2

Schultz (45) Date of Patent: Jul. 7, 2015
(54) VERIFYING AUTHENTICITY OF INPUT (56) References Cited
USING A HASHING ALGORITHM
U.S. PATENT DOCUMENTS
(75) Inventor: Roderick David Schultz, San Francisco, 5,475,826 A * 12/1995 TFischercooovcrvvvcenie, 707/695
CA (US) 5,893,086 A * 4/1999 Schmucketal. ... /1
7,505,605 B2 3/2009 Rhoads et al.
7,640,181 B2 12/2009 McCl t al.
(73) Assignee: Adobe Systems Incorporated, San Jose, 7,698,559 Bl 4/2010 Chcauﬁz:; ::lt al.
CA (US) 7,702,107 Bl 4/2010 Messing
7,735,144 B2 6/2010 Pravetz et al.
7,844,835 B2 11/2010 Ginter et al.
(*) Notice: Subject to any disclaimer, the term of this 7,890,549 B2* 2/2011 Effdeéteal, ,,,,,,,,,,,,,,,,,,,,, 707/803
patent is extended or adjusted under 35 7,913,314 B2 3/2011 Orthlieb et al.
U.S.C. 154(b) by 163 days. 7,917,749 B2 3/2011 Ginter et al.
8,386,509 B1* 2/2013 Scofieldetal. 707/769
2004/0153452 Al* 82004 Carrococeovvneeenenn. 707/9
(21) Appl. No.: 12/847,649 2005/0172123 Al* 82005 Carpentier ctal. 713/165
2008/0208828 Al* 82008 Boimanetal. 707/4
(22) Filed: Jul. 30, 2010 * cited by examiner
Primary Examiner — Hosain Alam
(65) Prior Publication Data Assistant Examiner — Eliyah S Harper
US 2013/0166514 Al Jun. 27, 2013 (74) Attorney, Agent, or Firm — Wolfe-SBMC
57 ABSTRACT
Methods, systems, and apparatus, including computer pro-
(51) Imt.ClL . L
grams encoded on a computer storage medium, for verifying
GO6F 17/00 (2006.01) based lication of a hashing alsorithm. 1
GOGF 17/30 (2006.01) amessage based on application ofa hashing algorithm. In one
: aspect, a method includes identifying a file and a key value
(52) US.CL and processing the file using multiple nonlinear functions to
CpPC ... GO6F 17/30 (2013.01); GO6F 17/30097 generate an output hash value, where the operations per-
(2013.01) formed by the nonlinear functions are modified based on the
(58) Field of Classification Search key value. The file can then be verified based on the output

USPC ot 707/609, 705, 698
See application file for complete search history.

106>
b

Memory Processor 140
Parameter Media Plavgr.. 28
values, Hash Valye 138
e Calolation Module
134 tHash Buffer 437

e

hash value.

20 Claims, 4 Drawing Sheets

e

N
e s

Conterd Server

Parameter 130
Assignment §1
Wodulz
Meraory

.
" Lo Hes142
Verification
126 GWE tadile
Filels) ; 1171

% 13

Procassor

AVAY

Content | |71
Filels) /
i
\\\\\\ /
1324 - “ 140
R ‘)
i

US 9,075,798 B2

Sheet 1 of 4

Jul. 7, 2015

Lt ST

ZkL.ITT

=

08882044

\

2ANPOR
UOHBIYLBA

arpoyy

\

{e¥oli4
uskeD

4§ (siotd

SPAS 744

Aoy

A\

-~

AR
744
Fleyng yser M 1741
BINPOR USHBSES e
sey ONBAMEEY mﬁw@:&\x
g BREdEs puRed
BET Aouiaiy
Fi ‘
pui 0SS0
e \
~ 240>
0ZL ¥

HIOMION

U.S. Patent

» :
__H pawubiasy /iz/ A
885011 vy
\\ JOAIDE JIBIIOT) ,
P
...\\\\ o

R

005

U.S. Patent Jul. 7, 2015 Sheet 2 of 4 US 9,075,798 B2

2067
%
202
Input Hash \f'aiae/
»| Round1
rd
N
2045 l
» Round 2
204b~
input L/ input
Message » Round 3 Key Value
4]
;‘E‘i‘}tlc"S g"g
Y
P Round ...
{
204d—
\ 4
208 » Round N

2040~ i

Output Hash Value N
FIG.2 201

U.S. Patent Jul. 7, 2015 Sheet 3 of 4 US 9,075,798 B2

300“'_7
{Aﬁ
identify input Message
and Input Key 305
Pad input Message T 240

1

. ” v

initialize Buffer

e 948 initialize Buffer - 355'
‘i h 4
Segment Input Message 320 Segment input Message 280
§ e Ea =
Perform Operafions e 525 Perform Operations | 385
Based on input key Based on Input key
Update Buffer] Update Buffer
370~

v

Combine Buffers From
Paraliel Processing

U.S. Patent Jul. 7, 2015 Sheet 4 of 4 US 9,075,798 B2

4607

identify Input Message

v

Seiect Key Va!ug N

™
~ 405

i 410
initialize
input Hash Vaiue T 45
lieratively Modify

input Hash Value B

T 420

Compare Qutput Hash
Vaiue to Expected Value § ™

428

Deny Access

< Authenticate 445
to Content Il

?

Aufhorize Access 440
{o Content

FIG. 4

US 9,075,798 B2

1
VERIFYING AUTHENTICITY OF INPUT
USING A HASHING ALGORITHM

BACKGROUND

This specification relates to verifying the authenticity of an
input message based on a hashing algorithm.

Hashing algorithms can be used to create a “fingerprint” of
a file or other data input. Hash functions can be used to create
a hash value that can serve as an identifier of a file or other
data. The hash value can be used as a shortcut for a lookup
table or can be used for data comparison, e.g., to detect
duplicate data or to verify that a particular file is an authentic
copy of another file. In some cases, hash functions for difter-
ent files can map to the same hash value, which results in a
collision. Typically, it is desirable to minimize such colli-
sions, so hash functions that have relatively high collision-
resistance are generally preferable over less collision-resis-
tant hash functions. It is typically also desirable that a hash
function is resistant to creation of alternative messages that
produce the same hash value. Examples of hashing algo-
rithms include MD4 (message digest algorithm 4), MDS,
SHA-1, and RIPEMD.

SUMMARY

This specification describes technologies relating to hash-
ing algorithms in which the operations performed during
execution of the hashing algorithm are modified based on an
input key.

In general, one innovative aspect of the subject matter
described in this specification can be embodied in methods
that include the actions of identitying a file, identifying a key
value, and processing the file using a plurality of nonlinear
functions to generate an output hash value. The operations
performed by the plurality of nonlinear functions are modi-
fied based on the key value, and the file can be verified based
on the output hash value. Other embodiments of this aspect
include corresponding systems, apparatus, and computer pro-
grams, configured to perform the actions of the methods,
encoded on computer storage devices.

These and other embodiments can each optionally include
one or more of the following features. Processing the file
using the plurality of nonlinear functions can include identi-
fying an input hash value and modifying the input hash value
by iteratively applying at least a subset of the plurality of
nonlinear functions to data from the file. Processing the file
using the plurality of nonlinear functions can also further
include segmenting the file into a plurality of blocks and
modifying the input hash value by iteratively applying at least
a subset of the plurality of nonlinear functions to each of the
plurality of blocks. Processing the file using the plurality of
nonlinear functions can further include modifying the input
hash value by iteratively applying a plurality of subsets of
nonlinear functions to data from the file in parallel to generate
aplurality of parallel hash values, and combining the parallel
hash values to generate the output hash value. The operations
performed by the plurality of nonlinear functions are modi-
fied based on the key value by determining an amount of
rotation to be applied to data from the file based on the key
value and/or selecting specific data for processing by the
plurality of nonlinear functions based on the key value. The
operations performed by the plurality of nonlinear functions
include rotating data in the blocks and at least one of calcu-
lating a complement of data in the blocks or performing
Boolean operations on data in the blocks. Generating the
output hash value further includes processing the key value

10

15

20

25

30

35

40

45

50

55

60

65

2

using one or more of the plurality of nonlinear functions. The
file is a files that is used to present multimedia content on a
client device. The file includes a SWF file. The file is received
from a server, either the key value or an identification of the
key value is received from the server, and the multimedia
content is presented using the file in response to verifying the
file. Verifying the file includes sending the output hash value
to the server for verification. Verifying the file includes com-
paring the output hash value to an output hash value associ-
ated with the file and/or the multimedia content.

In general, another aspect of the subject matter described in
this specification can be embodied in methods thatinclude the
actions of receiving a file to be verified, identifying a key
value for use in verifying the file, segmenting the file into a
plurality of blocks, modifying each of a plurality of predeter-
mined nonlinear functions based on the key value, and apply-
ing each of the plurality of modified nonlinear functions to the
plurality of blocks to generate an output hash value for use in
authenticating the file. Other embodiments of this aspect
include corresponding systems, apparatus, and computer pro-
grams, configured to perform the actions of the methods,
encoded on computer storage devices.

These and other embodiments can each optionally include
one or more of the following features. The plurality of modi-
fied nonlinear functions are applied to the plurality of blocks
in a plurality of iterations including one or more nonfinal
iterations and a final iteration. A buffer value is initialized to
an initial hash value, and the buffer value is modified by
combining a current buffer value with a result of an iteration
of applying one or more modified nonlinear functions to one
ormore of the blocks to generate an updated buffer value. The
updated buffer value for each nonfinal iteration is used as a
current buffer value for a subsequent iteration. The updated
buffer value for the final iteration is used to generate the
output buffer value. Each of a second plurality of predeter-
mined nonlinear functions are modified based on the key
value, each of the second plurality of modified nonlinear
functions are applied to the plurality of blocks to generate a
second updated buffer value, and the updated buffer value for
the final iteration is combined with the second updated buffer
value to generate the output hash value. Modifying each of a
plurality of predetermined nonlinear functions based on the
key value includes at least one of determining an amount of
rotation to be applied to blocks of data based on the key value
or selecting specific data for processing by the plurality of
nonlinear functions based on the key value. The file is authen-
ticated for use with specific multimedia content. The file is
adapted for execution on a virtual machine player to present
multimedia content.

Particular embodiments of the subject matter described in
this specification can be implemented so as to realize one or
more of the following advantages. The subject matter can be
implemented as a non-standard, one way hashing algorithm
that is resistant to cryptanalysis and is difficult to reverse
engineer. The hashing algorithm can be used for any data. As
one example, it can be used to verity the integrity of a Flash®
Player SWF file to prevent FLV and bandwidth theft and
protect the SWF file in case it is decompiled. Verifying SWF
files prevents third parties from creating their own SWF files
that attempt to stream another entity’s resources. These tech-
niques can also be used to protect a URL that streams video or
other content presented using the SWF file. In general, the
hashing algorithm can be used to authenticate a client (e.g., a
SWF file) to a server (e.g., a Flash® Media Server). The
server can base a decision on whether to send resources
(video, music, other types of data) to the client based on the
authentication, which allows the server to only send valuable

US 9,075,798 B2

3

resources to trusted clients. The techniques can also be used to
verify the integrity of any other type of file or message.

The details of one or more embodiments of the subject
matter described in this specification are set forth in the
accompanying drawings and the description below. Other
features, aspects, and advantages of the subject matter will
become apparent from the description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1isablock diagram illustrating a system for verifying
an input message.

FIG. 2 is a block diagram illustrating an algorithm for
calculating an output hash value.

FIG. 3 is a flowchart illustrating a process for generating a
hash value.

FIG. 4 is a flowchart illustrating a process for authorizing
access to content.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

A hash algorithm can be used to verify a file. For example,
a multimedia player file can be verified to protect against a
threat of use of an unauthorized player file (e.g., a SWF file).
An unauthorized player file can be used in some systems, for
example, to stream or play back multimedia content without
the authorization, remuneration, or other benefit to the con-
tent provider. Standard hash algorithms can be reverse engi-
neered because an attacker may be able to model a static
algorithm that can be used to create a hash value. Using a hash
algorithm that modifies operations used in the algorithm
based on an input key can reduce the threat of a hash algo-
rithm being reverse engineered.

FIG. 1 is a block diagram illustrating a system 100 for
verifying an input message. The system 100 includes one or
more web servers 105 and one or more content servers 115.
Although only one of each of the servers 105 and 115 is
illustrated in FIG. 1 for convenience, the functionality of the
servers 105 and 115 can be distributed among multiple dif-
ferent servers. In addition, the functionality of the different
servers 105 and 115 can be implemented in one or more server
pools. Throughout the following description, functions
described as being performed on a server can be performed on
a single server or on multiple servers acting in concert to
perform the describe functions. The web server 105 and the
content server 115 can communicate through a network 120.
The network 120 can include the Internet, one or more local
area networks (LANs), one or more wireless networks, or any
other network capable of facilitating electronic communica-
tions.

The web server 105 and content server 115 can be accessed
across the network 120 by client devices 122, e.g., personal
computers 122a, mobile phones 1225, personal digital assis-
tants (PDAs) 122¢, laptop computers 122d or other remote
devices capable of communicating across the network 120.
For example, a user of the client device 1224 may desire to
view content (e.g., multimedia content) provided by the web
server 105. The user can enter or otherwise select (e.g., by
clicking on a hyperlink) a URL (Uniform Resource Locator),
corresponding to a resource located on the web server 105,
into a web browser running on the client device 122a.

The resource can include a reference to multimedia content
(e.g., Flash® content). The web server 105 can provide one or
more files used to present the multimedia content (e.g., a

10

15

20

25

30

35

40

45

50

55

60

65

4

player file that provides a runtime environment for presenting
video, audio, text, and/or other information, which may be
contained in a separate file). For example, in some implemen-
tations, the web server 105 can provide a SWF (Small Web
Format) file, a Microsoft Silverlight file, or any other type of
file. The operator of the web server 105 may desire that
multimedia content provided by the web server 105 be
viewed using a player file provided by the web server 105 or
by the content server 115 and not some other player file. For
example, the player file provided by the web server 105 or
content server 115 can be configured to present advertise-
ments, gather user behavior analytics, or perform other func-
tionality beneficial to the provider of the web server 105.
Moreover, control of the player file used to present multime-
dia content can prevent third parties from deriving an unau-
thorized benefit from proprietary or otherwise protected (e.g.,
copyrighted) content.

In response to the request for the resource by the client
device 1224, the web server 105 can send a copy of the
resource to the client device 1224 and can also send a copy of
aplayer file (e.g., SWF file) to the client device 1224a. In some
implementations, the resource and/or the player file can be
provided by the content server 115. For example, the web
server 105 can forward a request for the resource and/or the
player file to the content server 115. The content server 115
can retrieve a player file from a player file repository (e.g.,
SWF files repository 126) included in memory 128 of the
content server 115. Along with the resource and the player
file, the web server 105 or content server 115 can send a
request to the client device 122a requesting that the client
device 1224 verity the player file. In some implementations,
the web server 105 or content server 115 can initially send
only the player file and await verification of the player file, as
described below, before sending (e.g., streaming) the content.
Alternatively, the content may be sent along with the player
file but may require a separate key, which is provided by the
web server 105 or content server 115 after verification of the
player file, to unlock the content.

For example, the web server 105 or content server 115 can
require that the client device 1224 calculate a hash value or
other fingerprint of the player file and send the hash value to
the web server 105 or to the content server 115 before autho-
rizing playback of the content. In some implementations, the
web server 105 or content server 115 can send a request to
calculate a hash value in a particular manner. The request can
include an input key value that is used to calculate an output
hash value. In some implementations, the request can also
include an input hash value that is used as an initial hashing
value to be modified by application of the hashing algorithm.
For example, a parameter assignment module 130 included in
the content server 115 can assign an input key value and an
input hash value for inclusion in the request that is sent to the
client device 122a. The parameter assignment module 130
can include software instructions stored in the memory 128
(or in another storage area) that are executable by a processor
131 included in the content server 115. These software
instructions can, for example, select among various input key
values and/or input hash values in a random manner or some
other manner, which may appear random to outside observ-
ers. In some cases, the request can include the actual inputkey
value and/or input hash value. In other cases, the request can
include a pointer or other identifier for the assigned input key
value and/or input hash value, the actual values of which can
be predefined on the client device 122a.

The client device 1224 can store the input key value and the
input hash value in (or can select an identified input key value
and/or input hash value from) a parameter values area 132 of

US 9,075,798 B2

5

memory 134 included in the client device 122a. A hash value
calculation module 136 included in a media player applica-
tion (e.g., Flash® player application) 138 calculates an output
hash value for the received player file using the input key
value and the input hash value. As described below, the output
hash value can be generated through iterative modifications to
the input hash value. Throughout these iterations, the input,
intermediate, and output hash values can be stored in a hash
buffer 137 included, for example, within the hash value cal-
culation module 136. The hash value calculation module 136
can include software instructions stored in the memory 134
(or in another storage area) that are executable by a processor
140 included in the client device 1224. The client device 122a
can send the calculated output hash value to the content server
115.

The hash calculation module 136 calculates the output
hash value using an algorithm that processes the player file
using multiple nonlinear functions, where the operations per-
formed by the nonlinear functions are modified based on the
key value. Using such an algorithm can make it difficult to
reverse engineer the algorithm compared to a standard hash
algorithm (e.g., an algorithm that includes logic that does not
change based on an input key and/or that uses known pro-
cessing steps). If a hash algorithm is reverse engineered or
otherwise compromised, it may be possible for multimedia
content provided by the web server 105 to be used without
permission and/or without benefit to the provider of the web
server 105. However, because the techniques implemented by
the hash calculation module 136 rely on non-standard pro-
cessing operations that are not easily detected, the techniques
are generally not susceptible to reverse engineering.

A verification module 142 included in the content server
115 can verify the output hash value sent by the client device
122a. For example, the verification module 142 can compare
the output hash value received from the client device 122a to
an expected hash value. The verification module 142 can, for
example, look up an expected hash value associated with the
sent input key value and input hash value. As another
example, the verification module 142 can calculate an
expected hash value using the input key value and input hash
value using the same hash calculation algorithm used by the
hash value calculation module 136 included in the client
device 122a4.

If the output hash value received from the client device
122a matches the expected hash value, the content server 115
can authenticate the player file. For example, the content
server 115 can send the multimedia content referenced from
the resource requested by the client device 1224 to the client
device 1224, enabling the playback of the multimedia content
using the player file sent to the client device 122a and using
the multimedia player (e.g., Flash® player) 138 included in
the client device 122a. The multimedia player 138 can, for
example, be a virtual machine configured to execute player
files.

As another example, in some implementations, the multi-
media content can be sent to the client device 122q along with
the player file, the input key value, and the input hash value.
If the content server 115 verifies the output hash value
received from the client device 122a, the content server 115
can send a message to the client device 122a instructing the
multimedia player 138 to allow playback of the multimedia
content (e.g., multimedia content may be unplayable in the
multimedia player 138 without approval from the content
server 115).

FIG. 2 is a block diagram illustrating an algorithm 200 for
calculating an output hash value 201. In the algorithm 200, an
input hash value 202 and an input key value 203 are used by

10

15

20

25

30

35

40

45

50

55

60

65

6

a set of processing rounds 204 to process an input message
206 to produce the output hash value 201. The input message
206 can be, for example, a file (e.g., a SWF file) or some other
data.

The input message 206 can be processed in segments. For
example, the processing rounds 204 can process the input
message in segments of a particular size (e.g., 512 bits). The
input message 206 can be padded before being processed by
the processing rounds 204, such that the size of the input
message 206 is evenly divisible by a certain segment size
(e.g., 512). If the input message 206 is processed in segments,
the algorithm 200 can include a repetition structure (e.g., a
loop) which processes one segment of the input message 206
atatime. Within each loop iteration, a current segment can be
identified and each of the processing rounds 204 can process
the current segment. Alternatively, each loop iteration can
operate on only a portion of the segment, such that multiple
loops are performed for each segment.

The input hash value 202 can include an initial value that is
copied to a hash bufter (e.g., hash buffer 137 in FIG. 1). Each
processing round 204 can perform a plurality of nonlinear
functions using some or all data from the hash buffer and
some or all data from the current segment of the input mes-
sage 206. The output of a particular processing round 204 can
be stored in the hash buffer and the hash buffer can be used as
input to a subsequent processing round 204. Nonlinear func-
tions can include, for example, left rotation of data, bitwise
Boolean operations (e.g., AND, OR, NOT, XOR (exclusive
OR)), two’s complement module 232 addition, or other opera-
tions.

The operations performed by the plurality of nonlinear
functions can be modified based on the input key value 203.
For example, the number and type of operations performed by
a processing round 204, the words selected for processing
from the segment of the input message 206, and the words
selected for processing from the hash buffer can be deter-
mined based on the input key value 203. For example, the
amount of left rotation performed by some or all processing
rounds 204 can vary based on the input key value 203. As a
more particular example, if the input key value is, for
example, “5”, then the processing round 2044 can perform,
for example, a left rotation operation using a rotation amount
of'two bits, and if the input key value is, for example, “7”, then
processing round 204q can perform, for example, a left rota-
tion operation using a rotation amount of three bits.

As another example, if the input key value is, for example,
“A”, then a particular processing round 204 can perform, for
example, AND, NOT, and XOR Boolean operations but not
OR Boolean operations on the current segment of the input
message 206 and on the hash buffer and if the input key value
is, for example, “H”, then a particular processing round 204
can perform OR and NOT Boolean operations but not AND
nor XOR operations on the current segment of the input
message 206 and on the hash buffer.

Each processing round 204 can perform one or more non-
linear functions, or a variable number of nonlinear functions,
where the number of nonlinear functions may vary based on
the input key value 203. For example, in some implementa-
tions, each processing round 204 performs sixteen nonlinear
functions. In some implementations, some or all of the non-
linear functions use the input key value as part of one or more
operations. In addition to modifying the nonlinear functions
based on the input key, the input key can also be selectively
combined with the input message as in standard key-based
hashing algorithms to alter the values that are input into the
nonlinear functions.

US 9,075,798 B2

7

The algorithm 200 can include a particular number of
processing rounds 204 (e.g., two, three, five, ten, or any other
number of processing rounds). In some implementations, the
input message 206 (or a copy of the input message 206) is
processed in parallel by multiple (e.g., two) sets of processing
rounds 204. In such implementations, each set of processing
rounds 204 can produce an output hash value 201, and a final
output hash value 201 may be generated by combining (e.g.,
adding together) the output hash values 201 generated by
each set of the multiple sets of processing rounds 204.

FIG. 3 is a flowchart illustrating a process 300 for gener-
ating a hash value. The process 300 can be performed, for
example, by a server and/or by a client device. An input
message and input key are identified at 305. For example, a
file to be verified can be identified. As a more particular
example, a SWF file used to present multimedia content can
be identified. A client device, for example, can receive a SWF
file to be verified from a server. In addition to identifying an
input message, an input key value can be identified. For
example, a client device can receive an input key value or an
identification of an input key from a server. As another
example, a server can select or generate an input key value to
send to a client device and can store the input key sent to the
client device for use in calculating an expected hash value in
parallel with the client device’s calculation of a hash value
based on the input message and input key.

The input message is padded at 310. For example, the input
message can be padded so that the length of the input message
including the padding is evenly divisible by a certain size
(e.g., 512 bits). As a more particular example, a first padding
operation can be performed which results in the input mes-
sage having a length of sixty four bits less than a multiple of
512 bits, and a second padding operation can be performed
which adds a sixty four (64) bit length value to the padded
input message, resulting in the input message including pad-
ding from both padding operations having a length evenly
divisible by 512 bits.

In some implementations, the input message is processed
using multiple (e.g., two) parallel processing paths, each of
which operates on the same input data but which typically use
entirely different or at least different combinations of nonlin-
ear operations. In the example of FI1G. 3, the first parallel path
begins at 315 and a second parallel path begins at 355, where
the path beginning at 355 includes similar processing to the
path beginning at 315. In some alternative implementations,
only one path is used, while other alternative implementa-
tions can use more than two parallel paths. At 315 (and
similarly at 355), a buffer is initialized. For example, a buffer
can be initialized to a pre-determined input hash value or set
of'values. As another example, the buffer can be initialized to
a received value or set of values (e.g., a value or set of values
received from a server). As a more particular example, the
buffer can be a 160-bit buffer including five 32-bit words
initialized to a series of hexadecimal values (where each value
is a 32-bit word value), e.g.: 67452301, efcdab89, 98badcfe,
10325476, and ¢3d2el110. Other initial buffer values can also
be used. At 355, a different, second buffer can be initialized.
The second buffer can be initialized to the same value
described above with respect to 315, or to a different value.

The input message is segmented at 320 (and similarly at
360). For example, the input message can be segmented into
blocks of a particular size (e.g., 512 bits). The input message
can be segmented into a block size based on the padding logic
used in 310 above. For example, if the padding logic used in
310 above pads the input message to a size evenly divisible by
a certain size (e.g., 512 bits), then the input message can be
segmented into blocks of that size (e.g., 512 bits). A repetition

40

45

55

8

structure can be configured to process segments of the input
message. In some implementations, one repetition structure
can include all parallel processing paths (e.g., the path begin-
ning at 315, the path beginning at 355). In some implemen-
tations, each parallel processing path can be included in a
different repetition structure.

The input message, or more specifically, a current segment
of the input message, is processed using a plurality of non-
linear functions at 325 (and similarly at 365), where the
operations performed by the plurality of non-linear functions
are modified based on the input key value. In some imple-
mentations, the buffer is also processed. For example, the
number and type of operations performed and the words
selected for processing from the segment of the input message
and the words selected for processing from the buffer can be
determined based on the input key value. For example, the
amount of left rotation performed and particular Boolean
operations selected to be performed can vary based on the
input key value. Other types of operations can be performed,
such as two’s complement 2°* modulo addition of words.
Generally, multiple different non-linear functions are used at
325 and a different set of non-linear functions is used at 365,
although it is possible for some non-linear functions to be
used more than once, either in the same parallel processing
path or in different parallel processing paths.

In some implementations, operations are performed by a
set of processing rounds, where the number of processing
rounds can be predetermined (e.g., five) or variable (e.g.,
based on the input key value). Each processing round can
perform a predetermined number (e.g., sixteen) or a variable
number (e.g., based on the input key value) of operations.

The buffer is updated at 330 (and similarly at 370). For
example, if the current buffer value is used as an input to the
processing round, the output of a processing round can be
stored in the buffer. As a more particular example, the output
of'each processing round statement can be stored in a particu-
lar word of the buffer. Alternatively, the output of a processing
round can be combined with (e.g., added to) the current buffer
value to produce a new buffer value that is used by a subse-
quent processing round and/or a subsequent iteration of the
processing rounds to iteratively modify the buffer value.

At 335 (and similarly at 375), it is determined whether
processing of the input message is complete. For example, it
can be determined whether there are more segments to pro-
cess. If there are more segments to process, operations are
performed on the segment based on the input key value (at
325). If there are no more segments to process, buffers from
parallel processing are combined at 380. For example, the
buffer associated with each parallel processing path can be
added together or otherwise combined to generate a final
output hash value.

FIG. 4 is a flowchart illustrating a process 400 for autho-
rizing access to content. An input message is identified at 405.
For example, a file to be verified can be identified. As a more
particular example, a SWF file sent to a client device used to
present multimedia content on the client device can be iden-
tified.

A key value is selected at 410. For example, a key value can
be generated randomly, can be based on the current date and
time, can be based on the input message, or can be based on a
file (e.g., a multimedia content file) or on other data associ-
ated with the input message.

An input hash value is initialized at 415. For example, an
input hash value can be initialized to a pre-determined value
or set of values. As another example, the input hash value can
be initialized to a 160-bit value including five 32-bit words

US 9,075,798 B2

9

initialized to the following hexadecimal values (where each
value is a 32-bit word value): 67452301, efcdab89, 98badcfe,
10325476, and c3d2el{0.

The input hash value is iteratively modified at 420. For
example, at least a subset of a plurality of nonlinear functions
can beiteratively applied to each of a plurality of blocks of the
input message and to the input hash value. The operations
performed by the plurality of nonlinear functions can include,
for example, some or all of rotating data, calculating a
complement of data, or performing Boolean operations. As
another example, the input hash value can be modified by
iteratively applying a plurality of subsets of nonlinear func-
tions to data from the input message and to the input hash
value in parallel to generate a plurality of parallel hash values.
The plurality of parallel hash values can be combined to
generate an output hash value. The nonlinear functions can be
modified based on the input key value, for example, by deter-
mining an amount of rotation to be applied based on the input
key value and/or by selecting specific data for processing by
the plurality of nonlinear functions based on the input key
value.

A buffer can be initialized to the input hash value and the
plurality of modified nonlinear functions can be applied to the
plurality of blocks and to the buffer in a plurality of iterations
including one or more nonfinal iterations and a final iteration.
The buffer can be modified by combining a current buffer
value with a result of an iteration of applying one or more
modified nonlinear functions to one or more of the blocks to
generate an updated buffer value. The updated buffer value
for each nonfinal iteration can be used as a current buffer
value for a subsequent iteration. The updated buffer value for
the final iteration can be used to generate an output hash
value.

The output hash value is compared to an expected value at
425. For example, the generated output hash value can be
compared to a second output hash value received from a client
device.

A determination of whether to authenticate the input mes-
sage is made at 430. For example, if the output hash value is
equal to the expected value, access to content associated with
the input message is authorized at 440. For example, if the
input message is a SWF file used to present multimedia con-
tent, access to requested multimedia content can be autho-
rized based on a match between the output hash value and the
expected hash value. More particularly, as one example,
requested multimedia content can be sent to a client device.
As another example, a message can be sent to a client device
authorizing playback of multimedia content previously sent
to the client device.

If the output hash value is not equal to the expected value,
access to content is denied at 445. For example, a request for
multimedia content from a client device can be ignored. As
another example, an error message can be sent to the client
device.

Embodiments of the subject matter and the operations
described in this specification can be implemented in digital
electronic circuitry, or in computer software, firmware, or
hardware, including the structures disclosed in this specifica-
tion and their structural equivalents, or in combinations of one
or more of them. Embodiments of the subject matter
described in this specification can be implemented as one or
more computer programs, i.e., one or more modules of com-
puter program instructions, encoded on computer storage
medium for execution by, or to control the operation of, data
processing apparatus. Alternatively or in addition, the pro-
gram instructions can be encoded on an artificially-generated
propagated signal, e.g., a machine-generated electrical, opti-

10

15

20

25

30

35

40

45

50

55

60

65

10

cal, or electromagnetic signal, that is generated to encode
information for transmission to suitable receiver apparatus
for execution by a data processing apparatus. A computer
storage medium can be, or be included in, a computer-read-
able storage device, a computer-readable storage substrate, a
random or serial access memory array or device, or a combi-
nation of one or more of them. Moreover, while a computer
storage medium is not a propagated signal, a computer stor-
age medium can be a source or destination of computer pro-
gram instructions encoded in an artificially-generated propa-
gated signal. The computer storage medium can also be, or be
included in, one or more separate physical components or
media (e.g., multiple CDs, disks, or other storage devices).

The operations described in this specification can be imple-
mented as operations performed by a data processing appa-
ratus on data stored on one or more computer-readable stor-
age devices or received from other sources.

The term “data processing apparatus” encompasses all
kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces-
sor, a computer, a system on a chip, or multiple ones, or
combinations, of the foregoing The apparatus can include
special purpose logic circuitry, e.g., an FPGA (field program-
mable gate array) or an ASIC (application-specific integrated
circuit). The apparatus can also include, in addition to hard-
ware, code that creates an execution environment for the
computer program in question, e.g., code that constitutes
processor firmware, a protocol stack, a database management
system, an operating system, a cross-platform runtime envi-
ronment, a virtual machine, or a combination of one or more
of them. The apparatus and execution environment can real-
ize various different computing model infrastructures, such
as web services, distributed computing and grid computing
infrastructures.

A computer program (also known as a program, software,
software application, script, or code) can be written in any
form of programming language, including compiled or inter-
preted languages, declarative or procedural languages, and it
can be deployed in any form, including as a stand-alone
program or as a module, component, subroutine, object, or
other unit suitable for use in a computing environment. A
computer program may, but need not, correspond to a filein a
file system. A program can be stored in a portion of a file that
holds other programs or data (e.g., one or more scripts stored
in a markup language document), in a single file dedicated to
the program in question, or in multiple coordinated files (e.g.,
files that store one or more modules, sub-programs, or por-
tions of code). A computer program can be deployed to be
executed on one computer or on multiple computers that are
located at one site or distributed across multiple sites and
interconnected by a communication network.

The processes and logic flows described in this specifica-
tion can be performed by one or more programmable proces-
sors executing one or more computer programs to perform
actions by operating on input data and generating output. The
processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application-specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing actions in accor-
dance with instructions and one or more memory devices for

US 9,075,798 B2

11

storing instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto-optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., a mobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a Global Posi-
tioning System (GPS) receiver, or a portable storage device
(e.g., auniversal serial bus (USB) flash drive), to name just a
few. Devices suitable for storing computer program instruc-
tions and data include all forms of non-volatile memory,
media and memory devices, including by way of example
semiconductor memory devices, e.g., EPROM, EEPROM,
and flash memory devices; magnetic disks, e.g., internal hard
disks or removable disks; magneto-optical disks; and CD-
ROM and DVD-ROM disks. The processor and the memory
can be supplemented by, or incorporated in, special purpose
logic circuitry.

To provide for interaction with a user, embodiments of the
subject matter described in this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e.g., amouse or a trackball, by which the user
can provide input to the computer. Other kinds of devices can
be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback, or
tactile feedback; and input from the user can be received in
any form, including acoustic, speech, or tactile input. In addi-
tion, a computer can interact with a user by sending docu-
ments to and receiving documents from a device that is used
by the user; for example, by sending web pages to a web
browser on a user’s client device in response to requests
received from the web browser.

Embodiments of the subject matter described in this speci-
fication can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server,
or that includes a front-end component, e.g., a client com-
puter having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification, or any com-
bination of one or more such back-end, middleware, or front-
end components. The components of the system can be inter-
connected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN), an inter-network
(e.g., the Internet), and peer-to-peer networks (e.g., ad hoc
peer-to-peer networks).

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi-
ments, a server transmits data (e.g.,an HTML page) to a client
device (e.g., for purposes of displaying data to and receiving
user input from a user interacting with the client device). Data
generated at the client device (e.g., a result of the user inter-
action) can be received from the client device at the server.

While this specification contains many specific implemen-
tation details, these should not be construed as limitations on
the scope of any inventions or of what may be claimed, but
rather as descriptions of features specific to particular

10

15

20

25

30

35

40

45

50

55

60

12

embodiments of particular inventions. Certain features that
are described in this specification in the context of separate
embodiments can also be implemented in combination in a
single embodiment. Conversely, various features that are
described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
bedescribed above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents in the embodiments described above should not be
understood as requiring such separation in all embodiments,
and it should be understood that the described program com-
ponents and systems can generally be integrated together in a
single software product or packaged into multiple software
products.

Thus, particular embodiments of the subject matter have
been described. Other embodiments are within the scope of
the following claims. In some cases, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. In addition, the processes depicted in the
accompanying figures do not necessarily require the particu-
lar order shown, or sequential order, to achieve desirable
results. In certain implementations, multitasking and parallel
processing may be advantageous. In other alternative
embodiments, the described techniques can be used to gen-
erate numerical values, and those numerical values can be
used to perform authentication (e.g., authenticating someone
by their ability to perform an action) or the resultant numeri-
cal values can be used as the input to another function (e.g., as
a key for XORing data together).

What is claimed is:
1. A method performed by data processing apparatus, the
method comprising:

identifying a file;

identifying a key value;

processing the file using a plurality of nonlinear functions
to generate an output hash value with operations per-
formed by the plurality of nonlinear functions, the pro-
cessing of the file including modifying each of the plu-
rality of nonlinear functions by at least one of
determining an amount of rotation to be applied to data
from the file based on the key value or selecting data for
processing by the plurality of nonlinear functions based
on the key value;

using the output hash value as an input for additional pro-
cessing of the file using the plurality of nonlinear func-
tions to generate an additional output hash value for use
in verifying the file; and

verifying the file based on a comparison of the additional
output hash value to an expected output hash value.

2. The method of claim 1, wherein processing the file using

the plurality of nonlinear functions includes:

identifying an input hash value; and

modifying the input hash value by iteratively applying at
least a subset of the plurality of nonlinear functions to
data from the file.

US 9,075,798 B2

13

3. The method of claim 2, wherein processing the file using
the plurality of nonlinear functions further includes:
segmenting the file into a plurality of blocks; and
modifying the input hash value by iteratively applying at
least a subset of the plurality of nonlinear functions to
each of the plurality of blocks.
4. The method of claim 3, wherein processing the file using
the plurality of nonlinear functions further includes:

modifying the input hash value by iteratively applying a .

plurality of subsets of nonlinear functions to data from
the file in parallel to generate a plurality of parallel hash
values; and

combining the parallel hash values to generate the output

hash value.

5. The method of claim 3, wherein the operations per-
formed by the plurality of nonlinear functions include rotat-
ing data in the blocks and at least one of calculating a comple-
ment of data in the blocks or performing Boolean operations
on data in the blocks.

6. The method of claim 1, wherein the output hash value is
generated by at least processing the key value using one or
more of the plurality of nonlinear functions.

7. The method of claim 1, wherein the file comprises a file
used to present multimedia content on a client device.

8. The method of claim 7, wherein the file comprises a
SWF file.

9. The method of claim 7, further comprising:

receiving the file from a server;

receiving one of the key value or an identification of the key

value from the server;

presenting the multimedia content using the file in

response to verifying the file.

10. The method of claim 9 wherein verifying the file
includes sending the output hash value to the server for veri-
fication.

11. The method of claim 9, wherein veritying the file
includes comparing the output hash value to an output hash
value associated with one of the file or the multimedia con-
tent.

12. A computer storage medium comprising instructions
that, responsive to execution by a computing device, cause the
computing device to perform a method, the method compris-
ing:

receiving a file to be verified;

identifying a key value for use in verifying the file;

segmenting the file into a plurality of blocks;

modifying each of a plurality of predetermined nonlinear

functions based on the key value, each of the plurality of
predetermined nonlinear functions being modified by at
least one of determining an amount of rotation to be
applied to data in the plurality of blocks based on the key
value or selecting specific data for processing by the
plurality of nonlinear functions based on the key value;
applying each of the plurality of modified nonlinear func-
tions to the plurality of blocks in iterations that include
one or more nonfinal iterations and a final iteration, said
applying including:
initializing a current buffer value to a first output hash
value;
modifying the current buffer value by at least combining
the current buffer value with a result of an iteration of
applying one or more of the modified nonlinear func-
tions to one or more of the plurality of blocks to
generate an updated buffer value, the updated buffer
value for each nonfinal iteration being usable as the
current butfer value for a subsequent iteration; and

20

25

30

35

40

45

55

60

14

using the updated buffer value as an input for the final
iteration of said applying the plurality of modified
nonlinear functions to the plurality of blocks to gen-
erate a second output hash value for use in authenti-
cating the file.

13. The computer storage medium of claim 12, wherein the
instructions, responsive to execution by the computing
device, cause the computing device to perform a method
further comprising:

modifying each of a second plurality of predetermined

nonlinear functions based on the key value;

applying each of the second plurality of modified nonlinear

functions to the plurality of blocks to generate a second
updated bufter value; and

combining the updated buffer value for the final iteration

with the second updated buffer value to generate the
output hash value.

14. The computer storage medium of claim 12, wherein the
instructions, responsive to execution by a computing device,
cause the computing device to perform a method further
comprising authenticating the file for use with specific mul-
timedia content.

15. A system comprising:

one or more processors configured to implement a verifi-

cation module as executable instructions, the verifica-

tion module configured to:

identify a key value to generate an output hash value;

authenticate a file stored on a user device based on a
comparison of the output hash value with an expected
output hash value thatis associated with an authorized
version of the file; and

generate the expected output hash value based on:
aplurality of predetermined nonlinear functions each

modified based on at least one of:

a determination of an amount of rotation to be
applied to segments of data from the file based on
the identified key value; or

selection of specific data from the file for process-
ing by the plurality of nonlinear functions based
on the identified key value;

each of the plurality of modified nonlinear functions
applied to segments of the file in iterations that
include one or more nonfinal iterations and a final
iteration;

a current buffer value initialized to a first output hash
value;

anupdated buffer value generated from a combination
of the current buffer value with a result of a nonfinal
iteration of one or more of the modified nonlinear
functions applied to one or more of the segments of
the file, the updated buffer value for each nonfinal
iteration being usable as the current buffer value for

a subsequent iteration; and

the updated buffer value used as an input for the final
iteration of the plurality of predetermined nonlin-
ear functions applied to the segments of the file to
generate the expected output hash value.

16. The system of claim 15, wherein the file is adapted for
execution on a virtual machine player to present multimedia
content.

17. The system of claim 15, wherein the one or more
processors are executed by a server that is operable to interact
with the user device through a data communication network,
and the user device is operable to interact with the server as a
client.

US 9,075,798 B2

15

18. The system of claim 15, wherein the expected output
hash value is generated further based on a repetition structure
that processes the segments of the file sequentially.

19. The system of claim 15, wherein each segment of the
file is processed using a repetition loop having multiple loop
iterations that operate on one or more portions of the segment.

20. The system of claim 15, wherein:

the current buffer value is stored in a hash buffer; and

one or more of the iterations utilizes a portion of data from

the hash buffer and a portion of data from a current
segment of the file, rather than all the data from the hash
buffer and all the data from the current segment of the
file.

10

16

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,075,798 B2 Page 1 of 1
APPLICATION NO. : 12/847649

DATED :July 7, 2015

INVENTORC(S) : Roderick David Schultz

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the claims
Column 15, line 4, delete “15”, insert -- 18 --, therefor.

Signed and Sealed this
First Day of December, 2015

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

